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Preeclampsia (PE) is a pregnancy complication, charac-
terized by systemic widespread inflammation related 

to the placenta and other fetus-originated tissues, which 
causes infant and maternal morbidity and mortality.[1] A 
significant clinical and biochemical improvement is seen 
with separation of the fetus and placenta subsequent to 
birth in most cases.[2] Although many extensive studies 
have been conducted, the exact cause and treatment re-
main unknown. Vascular inflammation and endothelial cell 
damage are some of the main mechanisms involved in PE 
formation mechanism.[3, 4] Increased cortisone levels are 
closely related with hypertension and endothelial damage, 
which are symptoms frequently observed in PE patients.[4]

Glucocorticoid-induced leucine zipper (GILZ) is a protein 
that was first identified in 1987.[5] GILZ gene expression 

is increased by IL-10 and dexamethasone.[6] GILZ was first 
detectedin T cells.[5] It is also secreted by mesenchymal 
stem cells as well as immune cells such as monocytes, mac-
rophages, mast cells, and dendritic cells. This steroid and 
chemokine has been observed to play a key role in anti-in-
flammatory and immunosuppressive processes. GILZ may 
be an alternative to treatments in which glucocorticoids 
are used because it increasesthe efficacy of glucocorticoids 
andinhibits the harmful effects of glucocorticoids during 
treatment.[6] GILZ interacts with intracellular signaling 
pathways such as C-RAF, nuclear factor kappa B subunit 1 
(NFKB1), and NFKB 2 in the cell. Moreover, GILZ is required 
for the release of IL-8 in dexamethasone-dependent respi-
ratory epithelial cells and of cyclooxygenase 2 (COX-2) in 
bone marrow-originated mesenchymal cells.[6] Therefore, 
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GILZ has an important role in regulating inflammation 
in various cells and tissues, suggesting that GILZ may be 
involved in PE and can be utilized in PE treatment. In this 
study, we anticipate that increased GILZ level is involved in 
PE pathogenesis in endothelial cells and trophoblasts.

Methods
In this prospective, experimental laboratory work, placen-
tal samples obtained from normal pregnant women who 
have never received steroid treatment before, who were 
matched for their gestational age, and who had no pa-
thology, and placental samples obtained after birth from 
patients diagnosed with PE were used. Ethics Committee 
approval was received from the University of South Florida 
for the study.

Immunohistochemistry
Formalin-fixed and paraffin-embedded samples were cut 
into 5-μm-thick sections that were then incubated one 
night at 56°C. The slides were deparaffinized in xylene (x3) 
for 20 min, followed by 100, 90, 80, and 70% alcohol x1 
for 10 min per gradient. Subsequent to deparaffinization, 
slides were heated in 10 mM citrate buffer for 15 min for 
specific antigen–antibody binding (pH 6.0). Subsequently, 
the sections were dipped in 3% hydrogen peroxide (50% 
methanol/50% distilled water) for 15 min to block endog-
enous peroxidase activity. These slides were then washed 
in tris-buffered saline (TBS) for 3–5 min and incubated 
with 5% normal horse serum (Lab Vision, Fremont, CA) at 
room temperature for 30 min in TBS to prevent unspecific 
bindings other than the desired antigen–antibody bind-
ing. Excess blocking serum was removed from the lamella 
at the end of this stage. Serial placental sections, blocking 
process of which was finished, were placed in 1% block-
ing horse serum in TBS (R&D Systems, Minneapolis, MN) 
with primer antibody (rabbit polyclonal anti-human GILZ 
antibody) (Cell Signaling Technology, Beverly, MA) by ad-
justing the concentration to 1:150 to be incubated during 
the night at 4°C. Normal rabbit IgG antibody isotypes were 
used in the same primary antibody concentrations as nega-
tive controls. The next day, primary antibody serial sections 
incubated with primary antibody were washed with TBS 
for 3–5 min, and the unbound antibodies were removed 
from the environment. Goat anti-rabbit secondary anti-
body biotinylated at 1:400 concentrations for 30 min at 
room temperature (Vector Laboratories, Burlingame, CA) 
was added after this stage. Antigen–antibody complex was 
determined using strep–avidin–biotin–peroxidase kit (Vec-
tor Lab) at room temperature for 30 min. 3.3 Diaminoben-
zidine tetrahydrochloride dehydrate (DAB, Vector Lab) was 
used as a chromogen to visualize immunoreactivity, and 

the sections were contrasted with hematoxylin.

GILZ immune activity was assessed semi-quantitatively 
using the following density categories: 0, no staining; 1+, 
weak but detectable staining; 2+, medium or different 
staining; and 3+, intensive staining. For each tissue, his-
tological score (HSCORE)=ΣPi (i+1) formula was used and 
HSCORE was obtained after the percentage of stained cells 
at each concentration category were added, and this val-
ue was multiplied by the intensity of the immunostaining. 
Here, “i” represents the intensity scores and “P” the relevant 
percentage of the cells as described. Five fields were ran-
domly selected on each slide and were evaluated under 
a light microscope (×40 magnification). These areas were 
evaluated at different times by two researchers who were 
blind to the type and source of the tissues for each concen-
tration in these cells. The individual and individual variabil-
ity coefficients for HSCORE evaluation were 10% and 12%, 
respectively. The average score of the two researchers who 
made the evaluation was used in the results. 

Results
Gestational age was calculated as 38.5±0.7 in the control 
group (mean±SD) and as 38.7±1.2 in the PE group. There 
was no statistically significant difference between the two 
groups for the average gestational age (p=0.850). GILZ im-
mune activity was detected in low- and intermediate-level 
interstitial trophoblasts and vascular endothelial cells in 
both the control and PE placental samples. This immune re-
action was observed to be poor in the cytoplasmic region 
and intensive in the nuclear region in both trophoblasts and 
endothelial cells. When the intensity of this immunostain-
ing was quantified numerically, the following was found: 
compared with the control, trophoblastnuclear HSCORE 
was (mean±SEM) 106.8±12.1 vs 167.9±14.9 (p=0.006), 
whereas the endothelial cell nuclear HSCORE was 95.0±8.1 
vs 147.2±12.3 (p=0.003) in preeclamptic placental sam-
ples. GILZ immunostaining intensity was calculated to be 
statistically higher in the PE group. A weak GILZ level was 
detected in the interstitial trophoblast cytoplasmic local-
ization. It was 59.0± 7.6 in the control group, whereas it 
was 60.7±6.5 (p=0.871) in the PE group. When cytoplasmic 
GILZ immunostaining intensity and nuclear GILZ activity 
were compared, GILZ HSCORE was found to be 106.8±12.1 
vs 59.0±7.6 (p=0.001) in the control placental samples. Nu-
clear GILZ immunoreactivityin PE patients was observed as 
167.9±14.9 vs 60.7±6.5 (p=0.002) (Fig. 1).

Discussion
This study provides evidence for a relationship between 
GILZ and PE for the first time. Studies on the role of glu-
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cocorticoids in PE pathogenesis have been previously con-
ducted.[7, 8] However, research on the direct role of GILZ in 
PE still remains insufficient. Increased immunity activity in 
vessels and deterioration of protective barrier function due 
to damage to vascular endothelial cells is the most import-
ant effect on PE pathogenesis.[9-11] The immunological and 
molecular mechanisms that start this change in the veins 
and that are involved in this process have still not been 
understood in a clear manner, despite many studies being 
conducted. There are studies that have shown that gluco-
corticoids cause endothelial damage and function deteri-
oration and those that use glucocorticoid in the treatment 
of endothelial damage.[12, 13] GILZ is a gene of the TSC-22 
protein family, which is inducible by dexamethasone and 
characterized by the presence of TSC box and leucine.[14] 

GILZ’s roles in mediating anti-inflammatory effects of glu-
cocorticoids are shown invariouscell types.[15-17] GILZ gene 
is released in the effect of glucocorticoids.[15-17] Some stud-

ies have shown that GILZ protein suppresses intracellular 
NF-KB signaling pathway activation and hampers inflam-
mation in human endothelial cells.[17] This shows that GILZ 
is secreted in large amounts in human tissues and it plays 
an important role in inflammation. Vascular endothelial 
cell, which has an important role in creating the blood–tis-
sue barrier, also plays a critical role in the development of 
vascular inflammatory damage.[18]

Studies have been conducted using overexpression of 
GILZ by employing animal models of different inflammato-
ry diseases or gene silencing strategies.[17, 19]Studies on rats 
have revealed that the suppression of GILZ contributes to 
inflammation by causing an increase in IL-1ß and IL-6 se-
cretion in macrophages.[19] Again, a study on human umbil-
ical vein endothelial cell culture (HUVEC) has reported that 
suppression of GILZ may play a role in the increase in in-
flammatory genes and in the occurrence of cardiovascular 
diseases.[17] GILZ has been demonstrated to be secreted at 
high levels in synovial endothelial cells in rheumatoid ar-
thritis patients. In addition, same study has also shown that 
increase in GILZ level in HUVECs decreases tumor necrosis 
factor-alpha level, leukocyte migration, and adhesion to 
endothelial cells.[20] This result shows that GILZ has a central 
role in endothelial cell function and inflammation of cell 
levels. The first study on GILZ has shown that GILZ inhib-
its NF-kB activity and the migration and proliferation of T 
lymphocytes, B lymphocytes, and macrophages. Similarly, 
GILZ has been shown to have an anti-inflammatory effect 
on endothelial cells.[17, 20] In this study, we determined that 
GILZ immune staining was mostly nuclear in both tropho-
blasts and placental endothelial cells. This finding suggests 
that GILZ functions by regulating genes at the nuclear lev-
el. In the present study, detection of high GILZ reactivity 
in endothelial cells and trophoblasts in the placenta taken 
from preeclamptic patients suggest that this molecule has 
an important role in the pathogenesis of PE. Increasing im-
mune activity medium in physiological levels is observed-
during pregnancy.[21-23] However, the deterioration of this 
balance is associated with pregnancy complications.[21-23] It 
is not known whether the increase in GILZ level in tropho-
blasts and endothelial cellsis a protective reaction or has a 
pathological role in PE. Previous studies have shown that 
GILZ release increased with gestational age and it had a 
role in COX-2 andprostagland in synthesis.[24, 25] Cox-2 has an 
important function not only in the development of normal 
pregnancy but also in normal birth. COX-1 level decreases 
but COX-2 secretion increases during normal birth.If there 
is a deficiency in COX-2 level, this results in premature mis-
carriage.[26]

Trophoblast migration is extremely important for change 
of the spiral arteries in the placental tissues and circulation 

Figure 1. Increased GILZ immune reactivity in preeclamptic placen-
tal endothelium and trophoblasts.

Normal placental sample (a, b) is seen as weak–medium and pre-
eclamptic placental sample (c, d) is seen as medium–strong in terms 
of GILZ immunostaining in microscopic photographs. Arrowheads 
indicate trophoblasts and arrows indicate placental vascular endo-
thelial cells. Graphics show HSCORE values in endothelial cells (e) 
and trophoblasts (f). Control and preeclampsia HSCORE is reflected 
as mean±SEM.
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low pressure in the materno–placental area.[27, 28] Tropho-
blasts migrate toward the decidual layer in placental devel-
opmental stage and replace the arterial smooth muscle layer 
in the spiral arteries and endothelial cells and create a ma-
terno–placental circulation, which facilitates the fine nutri-
ent andoxygen exchange in the placental area. It is believed 
that this insufficient migration of trophoblasts may be effec-
tive in the formation of PE.[27-29] This increasing GILZ levelin 
trophoblasts may affect this change and have a role in PE. 
Previous studies support the finding that the placenta’s ex-
posure to glucocorticoids in various ways and forms during 
pregnancy leads to insufficient placental trophoblast migra-
tion, invasion, and proliferation in vitro and induced hyper-
tension, fetal and placental growth restriction, renal function 
failure, and development of proteinuria, which are classic 
signs of PE in studies on rats.[7] Similarly, another study has 
shown that increased glucocorticoid metabolite level in the 
placenta increases the risk of PE.[30] Furthermore, increased 
stress in PE directly leads to an increase in cortisol level in 
the hypothalamic–pituitary–adrenal axis. This increased cor-
tisol level is associated with hypertension and endothelial 
damage.[4] This increased cortisol level may also contribute 
to PE pathogenesis by causing placental GILZ release. One of 
the limitations of the study is that the study does not show 
which signaling pathways are activated or suppressed by the 
increased GILZ protein in PE. Furthermore, it is not known if 
the increased GILZ level reactional protective response in PE. 
Our in vivo findings suggest that the GILZ protein may create 
a step related to PE pathogenesis.

These results show that GILZ released by trophoblasts and 
endothelial cells play an important role in patients with PE. 
Elevated GILZ release may also contribute to local and/or sys-
temic inflammation in PE. These findings may enable us to 
use GILZ as a new tool in the diagnosis and treatment of PE.
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